slベンフィカ

<ウェブサイト名>

<現在の時刻>

出典: 標準

Support Kyushu U 日本語 ENGLISH Prospective students Current students Companies & researchers Alumni Crisis Management News Events About Office of the President University Overview Kyushu U Connect Fast Facts Public Relations Featured Academics Schools & Centers The Global University Project Alumni Resources Donation Activities and Initiatives Future Plans University Facilities Academics Faculty of Arts and Science Schools Distinctive Education Programs Double Degree Programs Student Exchange Programs Short-term Study Programs The 3 Policies: Diploma, Curriculum, and Admissions Course Registration Academic Calendar Admissions Undergraduate Admissions Graduate Admissions Tuition, Fees & Scholarships Information for International Students Campus Life Facilities and Healthcare Extracurricular / Student-Led Activities Careers & Employment Procedures Contact Information for Consultations Research Research at Kyushu University Academic Staff Educational and Research Activities Database Research Activity Support Industry-University -Government Collaboration Support Research Centers and Projects Framework to Support Collaborated Research Research Integrity 日本語 ENGLISH News Topics Features Research Close-Up Notices Important Research Results Humanities & Social Sciences Art & Design Life & Health Math & Data Physics & Chemistry Materials Technology Environment & Sustainability Events Event Calendar Categories Public Seminar Lecture, etc. Exhibition Other Place Ito Campus Hakozaki Satellite Hospital Campus Chikushi Campus Ohashi Campus Beppu Campus Off Campus About Office of the President Message from the President Kyushu University VISION 2030 Biography Honorary Doctorates History of the Presidency Kyushu U Connect University Overview Organization Charter Presidential Selection Regulations and Policies History Future Plans Mid-Term Objectives and Plans Public Relations Publications Press Releases Promotional Videos University logomark List of Social Media Accounts Virtual Backgrounds Virtual Backgrounds (Archive) Featured Academics Campus Relocation Ceremony to Commemorate Completion of Ito Campus University Facilities Alumni Resources Alumni Associations Donation Donations to Schools, Graduate Schools, and Researchers, etc. Activities and Initiatives Promoting Diversity, Equity, and Inclusion QS-APPLE 2019 Response to the 2016 Kumamoto Earthquake Schools & Centers Research Institutes Centers for Common Education and Research Organizations and Offices Hospitals Libraries Museums Others Academics Faculty of Arts and Science Schools Educational and Research Course The 3 Policies Academic Calendar Course Registration Curriculum Registration / Syllabuses Distinctive Education Programs Program for Leading Graduate Schools Admissions Undergraduate Admissions Enrolling in Undergraduate School Applicants with Disabilities Graduate Admissions Applicants with Disabilities Enrolling as a Research Student Tuition, Fees, & Scholarships Tuition and Fees Enrollment Fee Exemption/Deferment and Tuition Fee Exemption for Newly-enrolled Students Scholarships Payment of tuition Tuition Fee Exemption, Enrollment Fee Exemption/Deferment Financial Aid Double Degree Programs Student Exchange Programs Campus Life Facilities and Healthcare Student Facilities Dormitories Healthcare Personal Accident Insurance for Students/ Liability Insurance Careers & Employment New Information How to use Job and Career Support System Career Consulting Job Hunting Support for International Students Recruitment of International Students Extracurricular / Student-Led Activities Procedures Certificates National Pension System for Students Contact Information for Consultations One-Stop Consultation Service Research Research at Kyushu University Humanities and Social Sciences Art and Design Life and Health Math and Data Physics and Chemistry Materials Technology Environment and Sustainability Research Close-Up Research Centers and Projects Next-Generation Fuel Cell Research Center (NEXT-FC) Research Activity Support On-campus Consultation Research Strategy Promotion Support for Research Funding and Grants Support for Other Research Activities Industry - University - Government Collaboration Support Technological Consultation Intellectual Property Management and Use Joint Research/Sponsored Research Comprehensive Collaboration Joint Research Department Research Integrity Framework to Support Collaborative Research International ・Prospective students ・Current students ・Companies & researchers ・Alumni ・Support Kyushu U Crisis Management ・Contact Us ・Visit ・Career ・Disclaimer & Copyright ・Privacy Policy ・Sitemap 研究成果 Research Results TOP News Research Results Storing electrons from hydrogen for clean chemical reactions Storing electrons from hydrogen for clean chemical reactions Researchers engineer a compound that can store electrons from hydrogen at room temperature and release them in useful chemical reactions 2024.03.29 Research ResultsPhysics & ChemistryMaterialsTechnology Fukuoka, Japan—Researchers from Kyushu University have developed a hydrogen energy carrier to address some of the biggest hurdles in the path towards a sustainable hydrogen economy. As explained in a paper published in JACS Au, this novel compound can efficiently “store electrons” from hydrogen in a solid state to use in chemical reactions later. Hydrogen is a promising source of clean energy with a lot of untapped potential applications in industry and everyday life. Unlike conventional fuels, hydrogen can be used to generate electricity without producing greenhouse gases. It can also be used in various chemical reactions such as hydrogenation, that is, as a source of hydride ion or hydrogen atom electrons. However, storing and transporting hydrogen in either gaseous or liquid states is extremely challenging, requiring expensive equipment and cooling systems. Professor Seiji Ogo from Kyushu University’s WPI-International Institute for Carbon-Neutral Energy (WPI-I2CNER) has been developing innovative solutions to these problems. In their most recent study, Ogo and his colleague from Kindai University took inspiration from nature to develop an iridium-based compound with peculiar and remarkably useful properties. “We have been actively exploring hydrogen energy carriers that can be easily synthesized and used as-is. These compounds are based on the hydrogenase enzyme found in nature, which can catalyze hydrogen into protons and electrons at room temperature,” explains Ogo. “A core idea of our approach that led to a breakthrough was to view hydrogen not as a source of negatively charged hydride ion or hydrogen atom, but as electrons.” After carefully examining many combinations of metal ions and organic ligands, the research team crafted an iridium-based compound which, when exposed to hydrogen incorporates it into the metal center after losing an iodide ion. In this way, the proposed compound can effectively extract and store electrons from hydrogen. These changes are readily reversible under the right conditions, and the stored electrons can be easily extracted and used in chemical reactions to synthesize valuable molecules. In this study, the researchers focused on using the electrons stored in the compound to catalyze cyclopropanation reactions. Cyclopropanes are molecules with a three-membered carbon ring structure and represent important structural units in various pharmaceutical drugs and organic compounds. However, conventional cyclopropanations have produced large amounts of waste metals as byproducts. The proposed hydrogen energy carrier circumvents this issue entirely. “The cyclopropanation reactions performed in our study use hydrogen rather than metals as the reductant and thus produce no metal waste. This is a major advantage of the proposed compound over established techniques,” remarks Ogo. Notably, this study also marks the first time that a reaction between hydrogen and alkenes—hydrocarbons containing a carbon double bond—produces cyclopropanes rather than the much simpler alkanes. After extensive testing, the team found that the proposed energy carrier can capture electrons from hydrogen and store them for over three months in solid state at room temperature. In future work, Ogo and colleagues plan to focus on developing a similar energy carrier using iron-group elements, which are cheaper and more abundant than iridium. By promoting industry-academia collaborations, their next efforts will aim to develop scalable solutions for practical problems surrounding upcoming hydrogen economies. “We sincerely believe that the present achievement will contribute to the realization of a carbon-neutral society,” concludes Ogo. Fig. 1. Reversible extraction and storage of electrons from hydrogen to catalyze cyclopropanation reactions. The proposed iridium-based compound can effectively store “electrons” from hydrogen and hold them in solid state at room temperature for months. These stored electrons can then be released to catalyze cyclopropanation reactions that do not produce metal waste. ### For more information about this research, see "Cyclopropanation using Electrons Derived from Hydrogen—Reaction of Alkenes and Hydrogen without Hydrogenation”, Seiji Ogo, Takeshi Yatabe, Keishi Miyazawa, Yunosuke Hashimoto, Chiaki Takahashi, Hidetaka Nakai, and Yoshihito Shiota, JACS Au, DOI: https://doi.org/10.1021/jacsau.4c00098 Research-related inquiries Seiji Ogo, ProfessorWPI-International Institute for Carbon-Neutral EnergyContact information can also be found in the full release. Kyushu U Connect Tweet Back to the list TOP News Research Results Storing electrons from hydrogen for clean chemical reactions Research Results Humanities & Social Sciences Art & Design Life & Health Math & Data Physics & Chemistry Materials Technology Environment & Sustainability Year 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 九州大学Kyushu University744 Motooka Nishi-ku Fukuoka 819-0395 Contact Us | Visit Career Academics Disclaimer & Copyright Admissions News Privacy Policy Research Events Sitemap Campus Life About COPYRIGHT © KYUSHU UNIVERSITY. ALL RIGHTS RESERVED.

ビデオスロットとは rizinbet ビデオスロットとは atp試合結果
Copyright ©slベンフィカ The Paper All rights reserved.